Amplification, redundancy, and quantum Chernoff information.
نویسندگان
چکیده
Amplification was regarded, since the early days of quantum theory, as a mysterious ingredient that endows quantum microstates with macroscopic consequences, key to the "collapse of the wave packet," and a way to avoid embarrassing problems exemplified by Schrödinger's cat. Such a bridge between the quantum microworld and the classical world of our experience was postulated ad hoc in the Copenhagen interpretation. Quantum Darwinism views amplification as replication, in many copies, of the information about quantum states. We show that such amplification is a natural consequence of a broad class of models of decoherence, including the photon environment we use to obtain most of our information. This leads to objective reality via the presence of robust and widely accessible records of selected quantum states. The resulting redundancy (the number of copies deposited in the environment) follows from the quantum Chernoff information that quantifies the information transmitted by a typical elementary subsystem of the environment.
منابع مشابه
Amplification, Decoherence, and the Acquisition of Information by Spin Environments
Quantum Darwinism recognizes the role of the environment as a communication channel: Decoherence can selectively amplify information about the pointer states of a system of interest (preventing access to complementary information about their superpositions) and can make records of this information accessible to many observers. This redundancy explains the emergence of objective, classical reali...
متن کاملDistinguishing Distributions Using Chernoff Information
In this paper, we study the soundness amplification by repetition of cryptographic protocols. As a tool, we use the Chernoff Information. We specify the number of attempts or samples required to distinguish two distributions efficiently in various protocols. This includes weakly verifiable puzzles such as CAPTCHA-like challenge-response protocols, interactive arguments in sequential composition...
متن کاملQuantum Chernoff bound as a measure of distinguishability between density matrices: Application to qubit and Gaussian states
Hypothesis testing is a fundamental issue in statistical inference and has been a crucial element in the development of information sciences. The Chernoff bound gives the minimal Bayesian error probability when discriminating two hypotheses given a large number of observations. Recently the combined work of Audenaert et al. Phys. Rev. Lett. 98, 160501 2007 and Nussbaum and Szkola e-print arXiv:...
متن کاملDiscriminating States: the quantum Chernoff bound.
We consider the problem of discriminating two different quantum states in the setting of asymptotically many copies, and determine the minimal probability of error. This leads to the identification of the quantum Chernoff bound, thereby solving a long-standing open problem. The bound reduces to the classical Chernoff bound when the quantum states under consideration commute. The quantum Chernof...
متن کاملAttainment of the multiple quantum Chernoff bound for certain ensembles of mixed states
We consider the problem of detecting the true quantum state among r possible ones, based on measurements performed on n of copies of a finite dimensional quantum system. It is known that the exponent for the rate of decrease of the averaged error probability cannot exceed the multiple quantum Chernoff bound (MQCB) defined as the worst case (smallest) quantum Chernoff distance between any possib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 112 14 شماره
صفحات -
تاریخ انتشار 2014